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Abstract: The importance of the peeormance 
of threads libraries is growing as clusters of shared 
memory machines become more popular POSIX 
threads, or Pthreads, is an industry threads library 
standard. We have implemented the first Pthreads 
benchmark suite. In addition to measuring basic thread 
functions, such as threud creution, we apply the L.ogP 
model to standard Pthreads communication mecha- 
nisms. We present the results of our tests for several 
hardware platforms. These results demonstrate that the 
pelformance of existing Pthreads implementations var- 
ies widely; parts of nearly all of these implementations 
could be further optimized. 

1. Introduction 

With the growing popularity of 
symmetric multiprocessors (SMPs), the 
importance of the performance of Pthreads 
libraries is increasing. However, no Pthreads 
benchmark suite currently exists. We are 
developing a benchmark suite that will fill this 
void. This tool will be useful in predicting and 
identifying performance problems of codes 
that use Pthreads. 

We are modifying a publicly available 
MPI benchmark suite in order to measure 
Pthreads performance. This approach will 
allow us to eventually provide a benchmark 
suite for measuring the performance of mixed 
programming models for clusters of SMPs 
that use both threads and message passing. 
Our initial results from several SMP systems 
demonstrate significant performance differ- 
ences between existing Pthreads implementa- 
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tions. Since hardware differences do not fully 
explain these performance variations, optimi- 
zations could improve the implementations. 

2. Incorporating Threads Bench- 
marks into SKaMPI 

SKaMPl is an MPI benchmark suite 
that provides a general framework for perfor- 
mance analysis [7]. SKaMPI does not exhaus- 
tively test the MPI standard. Instead, it 
provides a simple interface to incorporate 
additional measurements. This interface 
provides extensive facilities for data 
collection and test management, such as 
dynamic selection of independent variable 
values and of the number of trials to obtain an 
accurate measurement at any single data 
point. Thus, SKaMPI is an excellent starting 
point for implementing our Pthreads 
benchmark suite. 

Nonetheless, several aspects of 
SKaMPI are inappropriate for a Pthreads 
benchmark suite. Since clock granularity 
varies widely across systems, most bench- 
marks time repeated measurement actions, 
such as locking a mutex, and use the average 
time per iteration to estimate the time that the 
action takes. SKaMPI does not; instead it 
assumes that the duration of an action is suffi- 
ciently long to be measured individually. 
Since this assumption is clearly inappropriate 
for several important Pthreads actions, we 
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have modified SKaMPI’s data collection 
facilities to support multiple iterations of the 
measurement action per timing. 

The number of timings per data point 
varies in SKaMPI. A measurement is repeated 
until either a user-defined maximum number 
of timings or the standard deviation’ of the 
timings is less than a user-defined percentage 
of their mean. The mean is the reported 
measurement. This simple mechanism 
ensures data points are a good estimate of the 
average time to complete the measured 
action. Several of our benchmarks are 
symmetric. In these tests, the main thread and 
a client thread both repeatedly perform 
(essentially) the same action. All of our 
benchmarks measure the elapsed time in the 
main SKaMPI thread. In order to accom- 
modate the dynamic number of timings per 
data point, we terminate the client thread with 
pthread-cancel in these tests instead of 
exiting after a fixed number of iterations. This 
cancellation mechanism introduces very little 
overhead into the tests. If the client action 
does not include a cancellation point (as 
defined by Pthreads), the client calls 
pthread-test-cancel after some large 
number of repetitions. The main thread does 
not start the next measurement until the client 
acknowledges the cancel. 

A significant factor in the perfor- 
mance of many Pthreads functions is whether 
or not the threads being measured are running 
on the same CPU. Most vendors include a 
mechanism to bind a thread to a specific CPU. 
We implemented a set of macros that allow us 
to vary the CPU binding of each participating 
thread in each benchmark. 

1. SKaMPI actually uses standard error, 
which is the standard deviation divided by 
the square root of the number of timings, 
for the cutoff. Standard error converges 
even when the standard deviation large. We 
use standard deviation since it provides a 
stricter test and the number of timings is 
already limited. 

Clock granularity motivates another 
change to SKaMPI. Since SKaMPI is an MPI 
benchmark suite, it uses the MPI-Wtime . 
facility for its timings. However, the MPI 
standard does not require that MPI-Wtime 
use the best available clock; on some systems, 
its resolution is as high as one millisecond. 
Since system resources can severely restrict 
the number of iterations per timing for some 
Pthreads calls, we are replacing MPI-Wt ime 
with macro-based calls to more fine-grained 
clocks, which on many systems are the UNIX 
get t imeo f day facility. However, on DEC 
Alpha systems, we are implementing a 
rollover-safe clock based on the hardware 
cycle counter. 

We have made several other changes 
to the SKaMPI infrastructure, including 
several bug fixes to its data point selection 
and test restart facilities. We have also 
extended it to support more than one 
independent variable per data point, a facility 
that we use to’ ensure threads are running on 
different CPUs. We plan eventually to provide 
a compiler switch that eliminates the need to 
link with an MPI library; currently we simply 
run our threads tests within a single MPI 
process. However, we plan to retain the MPI 
tests, as our overall goal is a benchmark suite 
for an emerging programming model for SMP 
clusters in which threads on the same node 
communicate through shared memory and use 
message passing for internode communi- 
cation [5]. 

3. The Benchmarks 

Our benchmarks measure several 
significant components of Pthreads perfor- 
mance. Some measure basic system 
properties such as the time for thread creation 
or the length of a timeslice. The remainder of 
our tests measure thread communication and 
synchronization mechanisms, such as 
condition variables and mutexes. We describe 
each benchmark in detail. 



Our pthread-create benchmark 
measures the time to recursively create A4 
threads, where M is some large number. In 
this benchmark, the main thread sets a shared 
iteration count to zero, creates a thread and 
waits on a condition variable. Each newly 
created thread increments the iteration count 
and compares it to M. If the count is M, the 
thread signals the main thread. Otherwise, the 
thread creates another thread and immediately 
calls pthread-exit. The measurement 
reported for this benchmark is the time taken 
by the main thread divided by M. We report 
results for when the threads are created either 
detached or undetached with either system or 
process scope. 

Our thread yield test attempts to 
measure the time required for a context 
switch, similarly to one of the tests described 
by Mueller [6]. In this test, two threads 
repeatedly call sched-yield 
(thr-yield on Sun platforms). When the 
threads are bound to the same CPU, we 
expect the threads to alternate using the CPU 
and, thus, the total time divided by the 
number of yields approximates the thread 
context switch time. However, an auxiliary 
program revealed that this is not always the 
case under AIX. Under AIX, the initial thread 
does not regain the processor until its child 
thread has completed its yields. Therefore, on 
the IBM platform, this test first creates a 
proxy thread that measures the context switch 
time. With this mechanism, the threads 
alternate using the CPU as desired. 

We also bind two threads to the same 
CPU in order to determine the length of a 
time slice. In this test, the main thread sets a 
shared variable to zero and spins until the 
variable is not zero. Similarly, the client 
thread sets the variable to one and spins until 
it is not one. Both threads repeat this behavior 
M times. Each thread begins its time slice by 
setting the shared variable and then expends 
the rest of its time slice spinning. Thus, the 
length of a time slice is the total time for this 

test divided by 2A4. 
The Pthreads API provides -several 

mechanisms for communication between 
threads. Our original intent was to apply the 
LogP model to each of these mechanisms [2]. 
LogP models message passing communi- 
cation costs with four parameters: latency (L), 
which equals the time a message actually 
spends in transit; the overhead of sending (os) 
or receiving (oR) a message; the gap, g, which 
is the minimum interval between message 
sends (or receives); and the number of 
processors, P. We present benchmarks that 
measure the round trip time (2*(os + L + oR)) 
and the overheads for Pthreads communi- 
cation through both mutexes and condition 
variables. Our initial tests, based on the 
method for measuring message passing send 
overheads [3], indicates that the gap does not 
exceed the “send” overhead for Pthreads 
communication mechanisms. We leave lower 
level tests that might reveal excess cycles for 
future work. 

Condition variables provide an 
efficient mechanism for thread synchroni- 
zation. A thread that is waiting on a condition 
variable can be suspended until it receives a 
signal of the condition. A thread must acquire 
a mutex that protects the condition before 
waiting on it. The mutex is released within the 
call to pthread-condition-wait; it is 
reacquired before the thread returns from the 
call, but after the signal is received. These 
semantics make a condition variable ping- 
pong test straightforward: each thread alter- 
nates between waiting on the condition and 
signaling it. Since a thread can send a signal 
even when no other thread is waiting for it (in 
which case the signal is discarded), the time 
to call pthread-cond-signal 
repeatedly in one thread measures the cost of 
signaling a condition, which is the “send’ 
overhead of this communication. Potentially 
we could measure the receive overhead by 
waiting on a condition that another thread is 
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Figure 1: Mutex Ping-Pong Actions (arrows show operation order) 

continually signaling since the signaling 
thread does not need to own the mutex. This 
mechanism requires that the waiting and 
signaling threads be bound to different CPUs; 
otherwise the test tends to measure the length 
of a time slice. Unfortunately, cache 
coherence and memory bus contention 
overheads can increase the time required for 
receiving the signal, as the results that we 
present for the IBM platform indicate. We 
leave investigating these overheads for future 
work. 

We have also implemented a ping- 
pong test for mutex variables. In this test, we 
create four mutex variables, using the default 
protocol. Initially, the main thread holds the 
even indexed locks; the client the odd indexed 
ones. We ensure the main thread begins each 
ping-pong and that each pair of actions leaves 
the locks in their initial states by ordering the 
unlock/lock operations as shown by the 
arrows in Figure 1. Thus, the time for a pair of 
actions divided by four is the time required to 
perform one mutex ping-pong. 

We have implemented several tests 
that measure the overheads of the mutex 
operations. First, we ran our mutex ping-pong 
test with the lock/unlock operations 
performed only in the main thread. This no 
contention test provides a reasonable estimate 
of the sum of the overheads for the mutex 
operations. Similarly to Mueller [6], our 
mutex lock and unlock test provides an alter- 
native estimate of this sum by successively 

locking and unlocking the same mutex in the 
main thread; our results indicate that the no 
contention approach can underestimate the 
overheads due to ILP effects. Finally, we 
measure the individual overheads by first 
measuring the time to lock a large array of 
mutexes and then the time to unlock the same 
mutex array. Note that the array indexing 
overheads counteract any the ILP benefits. 
The overall effect varies across systems. 

4. Comparison of SMP Systems 

Table 1 shows results for our 
benchmark suite on three different platforms. 
Our Digital results are from a cluster of 
AlphaServer 4100’s running OSFl V4.0. 
Each node of this machine has four 533Mhz 
Alpha ev5 CPUs. Our IBM results are from 
LLNL’s Combined Technology Refresh 
(CTR) SP2, running AIX V4.3.2. Each node 
of this machine has four 332 Mhz PowerPC 
604e CPUs. Our SGI results are from Los 
Alamos National Laboratory’s Nirvana Blue. 
Each node of this machine has up to 128 250 
Mhz RlOOOO processors. Finally, we have 
obtained initial numbers for Sun’s implemen- 
tation of Pthreads. The Sun numbers are from 
an Enterprise 4000 with eight 168 Mhz 
UltraSparc Is CPUs. This general purpose 
interactive server at LLNL supports many 
users and can be quite busy. However, it was 
relatively quiet during our measurements. 
Nonetheless we are unable to perform the 



Table 1: Benchmark Results (in ps) -. 

Thread Create 

Condition Ping-pong 

Unbound 58.8 3.7 9.4 24.3 

Same CPU 13.4 37.8 N/A 24.2 
Mutex Ping-pong 

Different CPUs N/A 3.7 N/A 24.2 

No Contention 0.274 0.638 0.434 0.448 

Mutex lock and unlock 0.273 0.726 0.540 0.714 

Mutex lock 0.483 0.343 0.25 1 0.321 

Mutex unlock 0.495 0.478 0.296 0.417 

time slice test reliably since it is a shared facility works at the process level. However, 
resource. The nodes on the DEC cluster are testing indicates that it does apply to 
also shared, although we were able to run individual threads. Unfortunately, testing also 
most of our tests when no users were active. reveals that the operating system can override 
Our IBM numbers are from a dedicated node, the CPU binding after a’small period of time, 
while the SGI machine has facilities to particularly when the threads are bound to the 
provide dedicated CPUs on a node. same CPU. Thus, we report SGI results only 

Differences in the binding facilities of for the tests that use unbound threads. 
the machines significantly affect the tests that Our numbers indicate significant 
we are able to run. OSFl only provides a differences between the Pthreads implementa- 
facility to bind all of a process’s threads to the tions. The SGI machine has excellent perfor- 
same CPU; thus we do not report Digital mance for creating threads with process scope 
results for threads bound to different CPUs. - although its has the second slowest 
The situation on the SGI machine is worse. processors. The Sun machine also creates 
The man pages indicate that the binding process scope threads quickly - if they are 



detached. Creating a thread as undetached 
allows the creating process to receive a return 
status when the created thread exits. Since 
this capability requires extra thread table 
state, undetached threads are more expensive 
to create, particularly on the Sun platform. 
Our tests with system scope threads hung on 
the SGI machine. 

Although the Alphas are easily the 
fastest CPUs, the Digital machine is the 
slowest for our mutex and condition ping- 
pong tests with unbound threads. Since we 
expect unbound threads usually run on 
different CPUs, this result indicates the 
Digital Pthreads implementation needs to be 
better optimized for threads running on 
different CPUs. Also, Sun significantly 
outperforms IBM for the condition ping-pong 
test with threads bound to different CPUs 
although the IBM runs at essentially twice the 
clock speed. This result does not seem to 
reflect an inherent difference between the 
memory/bus systems of the machines since 
IBM’s performance on the mutex ping-pong 
test with threads bound to different CPUs is 
excellent and significantly better than either 
of the other machines. We plan to use either 
lmbench or hbench:OS to explore differences 
between the memory systems further [4, 11. 
However, we believe the differences in our 
results primarily arise in the Pthreads imple- 
mentations. 

5. Conclusions and Future Work 

No Pthreads benchmark suite 
currently exists; we have begun implementing 
a set of benchmarks to fill this void. After 
further testing and refinement, we will make 
this Pthreads benchmark suite publicly 
available. Our initial results show that system 
hardware differences do not completely 
explain significant differences between 
existing Pthreads implementations. 

We plan to expand our tests of 
Pthreads functionality. Additional bench- 

marks will measure the performance of 
functions such as pthread-cond-broadcast 
and pthread-cancel. We also are considering 
tests that evaluate higher level functionality 
that can be easily synthesized from Pthreads 
primitives, such as semaphores or barriers. 
We are also interested in the effect of using 
different mutex protocols, although many 
implementations currently support only the 
default protocol. 

This work has arisen during a project 
evaluating the use of mixed programming 
models on clusters of SMPs. Our overall goal 
is to provide a benchmark suite that can 
measure important aspects of mixed model 
performance, such as the cost of a barrier 
across all threads in all MPI processes. We 
anticipate eventually extending this 
benchmark suite to measure the performance 
of OpenMP and other SMP compiler direc- 
tives. Similarly to lmbench’s context switch 
test, these tests will require a work 
mechanism that we also expect to use with 
additional Pthreads tests. 
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